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SUMMARY

A fourth-order accurate solution method for the three-dimensional Helmholtz equations is described that
is based on a compact �nite-di�erence stencil for the Laplace operator. Similar discretization methods
for the Poisson equation have been presented by various researchers for Dirichlet boundary conditions.
Here, the complicated issue of imposing Neumann boundary conditions is described in detail.
The method is then applied to model Helmholtz problems to verify the accuracy of the discretization
method. The implementation of the solution method is also described. The Helmholtz solver is used
as the basis for a fourth-order accurate solver for the incompressible Navier–Stokes equations. Numer-
ical results obtained with this Navier–Stokes solver for the temporal evolution of a three-dimensional
instability in a counter-rotating vortex pair are discussed. The time-accurate Navier–Stokes simulations
show the resolving properties of the developed discretization method and the correct prediction of the
initial growth rate of the three-dimensional instability in the vortex pair. Copyright ? 2004 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Time-accurate, three-dimensional, high-resolution solutions of the Navier–Stokes equations are
of particular interest in the �eld of direct numerical simulation (DNS) and large-eddy sim-
ulation (LES) of turbulent �ows as well as in the �eld of aeroacoustics. These �ow prob-
lems are characterized by the presence of a large range of both time and length scales. For
these applications, spatial discretization methods with a high-order accuracy are of interest.
Typically, high-order means an order of spatial accuracy exceeding two. In this work, compact
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Figure 1. Stencil of compact-di�erence Laplace operator around node (i; j; k).

�nite-di�erence techniques of fourth-order accuracy are used for the spatial discretization of
the Navier–Stokes equations for incompressible �ow. The temporal integration of the Navier–
Stokes equations employs the fractional time-stepping method of Kim and Moin [1], which
is second-order accurate in time. This is a well-known temporal integration method for direct
numerical simulation of incompressible �ows. The method is semi-implicit, i.e. viscous terms
are treated implicitly in combination with explicit integration of the non-linear convection
terms. For three-dimensional problems, the method leads to a system of three independent
Helmholtz equations for the updated velocity components and a Poisson equation for the
pressure, to be solved for every time-step.
The main subject of this article is the spatial discretization method for the Helmholtz and

Poisson equations. A fourth-order accurate compact �nite-di�erence discretization method for
the Helmholtz equations is presented, with a discretization stencil that has a width of only
three mesh points in each spatial direction. This method can similarly be used for the Poisson
equation. A conventional fourth-order accurate central-di�erence method requires a stencil
width of �ve mesh points in each direction. The compact �nite-di�erence stencil for the
Laplace operator in three-dimensional space presented here is shown in Figure 1 and involves
27 grid points in total.
Compact �nite-di�erence approximations for the three-dimensional Poisson equation have

been known since the mid-1980s. Ananthakrishnaiah et al. [2] studied fourth-order �nite di�er-
ence methods for three-dimensional general linear elliptic problems with variable coe�cients
and Dirichlet boundary conditions discretized on a cubic domain with a uniform mesh. For the
Poisson equation, a fourth-order accurate scheme was derived that uses 19 grid points within
the 27-point stencil shown in Figure 1. A similar derivation, using symbolic computer alge-
bra, was presented by Gupta and Kouatchou [3]. A family of fourth-order accurate schemes
was derived on 15, 19 and 21 grid points, respectively, within the 27-point stencil shown
in Figure 1. However, their multi-grid solution method failed to converge for the 21-point
scheme. The other two schemes resulted in fourth-order accurate solutions for test problems
in a cubic domain. The work of Ananthakrishnaiah et al. [2] and Gupta and Kouatchou [3]
was restricted to Dirichlet boundary conditions.
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FOURTH-ORDER ACCURATE COMPACT-DIFFERENCE DISCRETIZATION 229

On the 27-point stencil of Figure 1, a sixth-order accurate approximation for the Poisson
equation can be obtained that needs fourth-derivatives of the forcing functions, as is shown
by Spotz and Carey [4]. Since the fourth-derivatives cannot be computed within the 27-point
stencil, a practical sixth-order accurate method cannot be derived on this stencil.
In the present article, a fourth-order accurate �nite-di�erence approximation for the three-

dimensional Helmholtz equation is presented that uses all grid points of the 27-point stencil
of Figure 1. The method is more general than the methods of Ananthakrishnaiah et al. [2]
and Gupta and Kouatchou [3], i.e. a one-parameter family of fourth-order schemes is derived.
The parameter can be chosen such that the schemes on 15, 19 and 21 grid points are ob-
tained. An important aspect of the present study is the formulation of Neumann boundary
conditions, which often appear in the Poisson problem that typically results from the temporal
integration of the incompressible Navier–Stokes equations. Imposing Neumann boundary con-
ditions proves to be a complicated aspect of using three-dimensional compact �nite-di�erence
discretization methods.
Section 2 describes the fourth-order accurate discretization method for the Helmholtz equa-

tion. The formulation of Neumann boundary conditions is described in Section 3. The object-
oriented implementation of the solution method for the Helmholtz equation is described in
Section 4. A veri�cation of the discretization method is presented in Section 5. In that section,
numerical results for a test problem in a cubic domain are analysed, for Dirichlet boundary
conditions as well as for Neumann boundary conditions. The remaining part of this article
focuses on numerical simulation of the three-dimensional Navier–Stokes equations for incom-
pressible �ow. The solution method for these equations of fourth-order spatial accuracy, that
uses the solution method for the Helmholtz equation shown in Section 2, is described in
Section 6.
The developed simulation method for the Navier–Stokes equations for incompressible �ow

has been used in research work on large-scale aircraft wake vortex simulations, simulating
the evolution of three-dimensional instabilities in counter-rotating vortex pairs (described in
Reference [5]). Numerical results for the long-wavelength instability, or Crow instability (see
Reference [6]), in a vortex pair are presented in Section 7. The spatial resolution of the
time-dependent �ow �eld is discussed. Finally, conclusions are drawn in Section 8.

2. SPATIAL DISCRETIZATION OF HELMHOLTZ=POISSON EQUATIONS

This section discusses the fourth-order accurate compact �nite-di�erence discretization of the
Helmholtz equation on a uniformly spaced three-dimensional rectangular domain. The dis-
cretization method uses the stencil sketched in Figure 1. The discretization method is similar
to methods presented by Ananthakrishnaiah et al. [2] and Gupta and Kouatchou [3]. However,
the method discussed here is more general than any of the methods discussed in References
[2, 3], since it is generalized to Helmholtz equations and has one parameter that can be chosen
freely.

2.1. Spatial discretization of Laplace operator

The fourth-order accurate compact �nite-di�erence stencil for the Laplace operator in three
dimensions, which relates the Laplace operator in a point (i; j; k) and the one in its 6 immediate
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neighbours (i − 1; j; k), (i + 1; j; k), (i; j − 1; k), (i; j + 1; k), (i; j; k − 1) and (i; j; k + 1), the
points indicated as in Figure 1, is chosen to have the following form:

�fi; j; k + �[�fi−1; j; k +�fi+1; j; k +�fi; j−1; k +�fi; j+1; k +�fi; j; k−1 + �fi; j; k+1]

= a1(fi−1; j; k + fi+1; j; k + fi; j−1; k + fi; j+1; k + fi; j; k−1 + fi; j; k+1 − 6fi; j; k)=h2

+
a2
4
(fi−1; j−1; k + fi−1; j+1; k + fi+1; j−1; k + fi+1; j+1; k

+fi−1; j; k−1 + fi−1; j; k+1 + fi+1; j; k−1 + fi+1; j; k+1

+fi; j−1; k−1 + fi; j−1; k+1 + fi; j+1; k−1 + fi; j+1; k+1 − 12fi; j; k)=h2

+
a3
4
(fi−1; j−1; k−1 + fi−1; j+1; k−1 + fi+1; j−1; k−1 + fi+1; j+1; k−1

+fi−1; j−1; k+1 + fi−1; j+1; k+1 + fi+1; j−1; k+1 + fi+1; j+1; k+1 − 8fi; j; k)=h2 (1)

the parameters �, a1, a2 and a3 are to be determined by matching the Taylor series expansion
of the left-hand side with the one of the right-hand side to the required order. For convenience,
the nodes in the stencil are divided in the following groups, indicated with di�erent symbols
in Figure 1:

• : the 6 nodes associated with coe�cient a1;
• •: the 12 nodes associated with coe�cient a2;
• ◦: the 8 nodes associated with coe�cient a3.

For fourth-order accuracy, the Taylor series coe�cients corresponding to terms involving the
various even derivatives:

�fi; j; k ;
(
@4f
@x4

+
@4f
@y4

+
@4f
@z4

)
;

(
@4f
@x2 @y2

+
@4f
@x2@z2

+
@4f
@y2@z2

)
(2)

need to be matched. Solving the resulting linear system of equation gives:

�=
1
6
; a1 =

2
3
+ �; a2 =

4
3

− 2�; a3 =� (3)

with � a parameter that can be freely chosen. For speci�c values of �, the following family
of fourth-order accurate stencils results:

• �=0: 19-point stencil, removes 8 vertices corresponding to a3;
• �=− 2=3: 21-point stencil, eliminates the 6 nodes corresponding to coe�cient a1;
• �= +2=3: 15-point stencil, nodes corresponding to coe�cient a2 eliminated from stencil;
• � =∈ {0;−2=3;+2=3}: 27-point stencil involving all nodes.

The �rst stencil was used in the fourth-order accurate discretization method for the Pois-
son equation derived by Ananthakrishnaiah et al. [2]. The �rst three stencils were used by
Gupta and Kouatchou [3] in their fourth-order accurate discretization methods for the Poisson
equation. The last stencil, i.e. with � =∈ {0;−2=3;+2=3}, was not shown by Ananthakrishnaiah

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:227–244



FOURTH-ORDER ACCURATE COMPACT-DIFFERENCE DISCRETIZATION 231

et al. [2] or Gupta and Kouatchou [3]. The dependence on � of the resolution properties of
the discretization method is studied in Section 5.

2.2. Helmholtz=Poisson solver

A fourth-order accurate solution method for the three-dimensional Helmholtz equation,(
@2

@x2
+
@2

@y2
+
@2

@z2
− �

)
f(x; y; z)= r(x; y; z) (4)

with � a constant parameter in a three-dimensional computational domain with a structured
mesh with uniform mesh spacing h in all three co-ordinate directions, can be derived from
the compact �nite-di�erence expression given in Equation (1) with the coe�cients de�ned in
Equation (3). The derivation starts with expression:

�fi; j; k +
1
6
[�fi−1; j; k +�fi+1; j; k +�fi; j−1; k +�fi; j+1; k +�fi; j; k−1 + �fi; j; k+1]

=
1
h2

(
2
3
+ �

)
(fi−1; j; k + fi+1; j; k + fi; j−1; k + fi; j+1; k + fi; j; k−1 + fi; j; k+1 − 6fi; j; k)

+
1
4h2

(
4
3

− 2�
)
(fi−1; j−1; k + fi+1; j−1; k + fi−1; j+1; k + fi+1; j+1; k

+fi−1; j; k−1 + fi+1; j; k−1 + fi−1; j; k+1 + fi+1; j; k+1

+fi; j−1; k−1 + fi; j+1; k−1 + fi; j−1; k+1 + fi; j+1; k+1 − 12fi; j; k)

+
�
4h2

(fi−1; j−1; k−1 + fi+1; j−1; k−1 + fi−1; j+1; k−1 + fi+1; j+1; k−1

+fi−1; j−1; k+1 + fi+1; j−1; k+1 + fi−1; j+1; k+1 + fi+1; j+1; k+1 − 8fi; j; k) +O(h4) (5)

Equation (5) can be used to solve the Helmholtz equation (4) by �rst developing the left-
hand side of Equation (5) into Taylor series expansions up to fourth-order accuracy, this
gives:

�fi; j; k +
1
6
[�fi−1; j; k +�fi+1; j; k +�fi; j−1; k +�fi; j+1; k +�fi; j; k−1 + �fi; j; k+1]

= 2�fi; j; k +
h2

6
�2fi; j; k +O(h4)

= 2ri; j; k +
h2

6
(�ri; j; k +�ri; j; k) +

1
6
(12 + �h2)�fi; j; k +O(h4) (6)

where the last step uses Equation (4). The terms with the function values on the right-hand
side of Equation (6) are moved to the left-hand side of Equation (5), resulting in the following
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expression on a 27-point stencil:

−dfi; j; k +
(
2
3
+ �

)
(fi−1; j; k + fi+1; j; k + fi; j−1; k + fi; j+1; k + fi; j; k−1 + fi; j; k+1)

+
(
1
3

− �
2

)
(fi−1; j−1; k + fi+1; j−1; k + fi−1; j+1; k + fi+1; j+1; k

+fi−1; j; k−1 + fi+1; j; k−1 + fi−1; j; k+1 + fi+1; j; k+1

+fi; j−1; k−1 + fi; j+1; k−1 + fi; j−1; k+1 + fi; j+1; k+1)

+
�
4
(fi−1; j−1; k−1 + fi+1; j−1; k−1 + fi−1; j+1; k−1 + fi+1; j+1; k−1

+fi−1; j−1; k+1 + fi+1; j−1; k+1 + fi−1; j+1; k+1 + fi+1; j+1; k+1)

= 2h2ri; j; k +
h4

6
(�ri; j; k +�ri; j; k) +O(h6) (7)

where diagonal element d=(8 + 2�) + [(12 + �h2)=6]�h2. The evaluation of �r in Equation
(7) needs to be of second-order accuracy only to guarantee fourth-order accuracy of the
method.
Applying Equation (7) to the Helmholtz equation (4) on the domain � results in the

following system of equations:

Af=2h2r +
h4

6
(�r +�r) + ud + 2hun +O(h

6) (8)

where A is the sparse discretization matrix, f is the vector containing the unknown function
values fi; j; k , r is the vector representing the forcing term of Equation (4) in the mesh points
and �r is the vector containing the Laplacian of the forcing term in the mesh points. Dirichlet
and Neumann boundary conditions are represented by the vectors ud and un,
respectively.

3. FORMULATION OF BOUNDARY CONDITIONS

The formulation of Dirichlet boundary conditions for the present fourth-order �nite-di�erence
method contains the known function values at the domain boundary in the vector ud on the
right-hand side of Equation (8). Since the stencil width is just 3 mesh points, this is su�cient
to maintain fourth-order accuracy. Therefore, the formulation of Dirichlet boundary conditions
is not more complicated than that for a conventional second-order accurate central-di�erence
method, which also has a stencil width of 3 mesh points.
The formulation of Neumann boundary conditions is signi�cantly more complicated and is

discussed in detail here. The implementation of Neumann boundary conditions prescribed on
the face (0; j; k) is taken as example. Applying the discretization scheme to the grid points of
this face of the domain, introduces mesh points with i=− 1 into the system. The contribution
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of mesh points with i=− 1 is eliminated using the central-di�erence expression for the �rst
derivative at the face of the domain considered (i=0):

f1; j; k − f−1; j; k =2h
(
@f
@x

)
0; j; k

+
h3

3

(
@3f
@x3

)
0; j; k

+O(h5) (9)

The complicating element is the third-derivative at the boundary i=0 that needs to be included
in order to maintain fourth-order accuracy of the solution method. The need to compute the
third-derivative in the direction normal to the domain boundary can be circumvented by
rewriting this derivative as:

(
@3f
@x3

)
0; j; k

=
@
@x

[
�f0; j; k −

(
@2f
@y2

)
0; j; k

−
(
@2f
@z2

)
0; j; k

]

=
@
@x

[
r0; j; k + �f0; j; k −

(
@2f
@y2

)
0; j; k

−
(
@2f
@z2

)
0; j; k

]

=
(
@r
@x

)
0; j; k

+ �
(
@f
@x

)
0; j; k

− @2

@y2

(
@f
@x

)
0; j; k

− @2

@z2

(
@f
@x

)
0; j; k

(10)

where Equation (4) has been used.
The formulation of the discretization method for mesh points on the face (0; j; k) can be

obtained by using Equation (7), Equation (9) and Equation (10). For each grid point (0; j; k)
on the domain boundary at which Neumann boundary conditions are imposed, 9 mesh points
(for which i=− 1) of the total of 27 mesh points of the stencil need to be eliminated using
Equation (10). The terms @2=@y2(@f=@x) and @2=@z2(@f=@x) for these 9 grid points can be
combined into a much simpler form using Taylor series expansions. Following this approach,
the discretization of Equation (7) at the grid point on the boundary with Neumann conditions
(i=0) becomes:

−dfi; j; k +
(
2
3
+ �

)
(2f1; j; k + f0; j−1; k + f0; j+1; k + f0; j; k−1 + f0; j; k+1)

+
(
1
3

− �
2

)
(2f1; j−1; k + 2f1; j+1; k + 2f1; j; k−1 + 2f1; j; k+1

+f0; j−1; k−1 + f0; j+1; k−1 + f0; j−1; k+1 + f0; j+1; k+1)

+
�
2
(f1; j−1; k−1 + f1; j+1; k−1 + f1; j−1; k+1 + f1; j+1; k+1)

= 2h2r0; j; k +
h4

6
(�r0; j; k +�r0; j; k) + 2hun(0; j; k) +O(h

5) (11)
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with the elements of vector un given as:

un(0; j; k) = 2
(
@f
@x

)
0; j; ;k

+
h2

6

[(
2
3
+ �

) (
@r
@x

)
0; j; ;k

+
(
1
3

− �
2

) {(
@r
@x

)
0; j−1; k

+
(
@r
@x

)
0; j+1; k

+
(
@r
@x

)
0; j; k−1

+
(
@r
@x

)
0; j; k+1

}

+
�
4

{(
@r
@x

)
0; j−1; k−1

+
(
@r
@x

)
0; j+1; k−1

+
(
@r
@x

)
0; j−1; k+1

+
(
@r
@x

)
0; j+1; k+1

}]

+ �
h2

6

[(
2
3
+ �

) (
@f
@x

)
0; j; ;k

+
(
1
3

− �
2

) {(
@f
@x

)
0; j−1; k

+
(
@f
@x

)
0; j+1; k

+
(
@f
@x

)
0; j; k−1

+
(
@f
@x

)
0; j; k+1

}

+
�
4

{(
@f
@x

)
0; j−1; k−1

+
(
@f
@x

)
0; j+1; k−1

+
(
@f
@x

)
0; j−1; k+1

+
(
@f
@x

)
0; j+1; k+1

}]

(12)

again with diagonal element d=(8+2�)+((12 + �h2)=6)�h2. The discretization of the imposed
Neumann boundary condition is based on the fourth-order accurate expression of Equation (9).
Therefore, the derivatives of f are assumed to be known from the problem de�nition either
exactly or from approximation using one-sided di�erences of fourth-order accuracy. As a
result of the pre-multiplication with h2, the evaluation of the derivatives of r needs to be of
second-order accuracy only. One-sided di�erences are used for this purpose.

4. IMPLEMENTATION OF HELMHOLTZ SOLVER

The fourth-order accurate discretization method for the Helmholtz equation given in Equation
(7) forms the basis of the solver for three-dimensional Helmholtz problems used in the present
work. The implementation of this solver was designed to enable solution of the Helmholtz and
Poisson problems in a wide variety of computational domains and combinations of imposed
boundary conditions. To achieve this �exibility, the object-oriented programming approach
was chosen, using the C++ programming language, where user-de�ned data types (classes,
see Reference [7]) are de�ned that contain data elements and functions=operators. Using this
approach, the solution method is implemented as a collection of cooperating objects, which are
instances of the di�erent classes. A hierarchy of classes is formed using inheritance (construct
new classes by re-using already existing class de�nitions). In the implementation of the present
Helmholtz solver, a basis framework is created that includes most of the techniques required to
solve the Helmholtz equations in three dimensions, such as the �nite-di�erence expressions for
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the spatial derivatives, conjugate gradient methods that solve the linear systems of equations,
preconditioners, vector-norm functions, etc. This framework is designed to be independent of
the choice of data structure used to represent the unknowns of a particular Helmholtz problem
that is to be solved, i.e. this data is hidden in an object (data encapsulation). User-de�ned
classes are then added (typically by inheriting from existing classes) to this framework to
de�ne the problem-speci�c domain properties and boundary conditions. In this way, a large
range of di�erent Helmholtz problems can be solved with only small additions to the basis
framework. In the present article, the developed Helmholtz solver is applied only to model
problems with a rectangular computational domain.
The sparse-matrix system of linear equations that results from applying Equation (7) is

solved using either the preconditioned conjugate gradient method (for symmetric systems) or
the preconditioned bi-conjugate gradient method (for non-symmetric systems). In both cases,
a Jacobi preconditioner is used. The implementation of the conjugate gradient methods is
based on that of References [8, 9].

5. APPLICATION TO MODEL PROBLEM

The accuracy of the Helmholtz solver, described in Section 2, is analysed in this section by
application to a model problem. The model problem involves the solution of the Helmholtz
equation, as given in Equation (4), in a unit cube �= [0; 1]3 with N + 1 uniformly spaced
grid points, with mesh spacing h, identical in the three co-ordinate directions. A model prob-
lem can be formulated by choosing a solution f(x; y; z) in this domain and computing the
corresponding forcing function r(x; y; z) by substitution of solution f(x; y; z) in the Helmholtz
equation. For brevity, only one such a ‘constructed-solution’ model problem is considered
here, i.e. with the exact solution given as:

f(x; y; z)=1 + x + cos(2�x) sin(2�y) sin(2�z) (13)

To con�rm the �ndings of the present analysis, a model problem with an exponential spatial
dependence was also studied. Here, the results of this model problem are not discussed.
For the model problem with solution (13), two sets of boundary conditions are considered:

• Dirichlet boundary conditions on the six faces of the computational domain. In this case,
the coe�cient matrix A in Equation (8) is symmetric and the approximate solution is
obtained using the pre-conditioned conjugate gradient method;

• Neumann boundary conditions on the faces i=0 and N and Dirichlet boundary condi-
tions on the 4 other faces. For both model problems, function f(x; y; z) has a non-zero
normal derivative at the faces i=0 and N . For � �=0, the derivative of the forcing term
r(x; y; z) is non-zero as well. Therefore, with these model problems, the formulation for
the Neumann boundary conditions can be properly tested.
The coe�cient matrix is non-symmetric for this combination of boundary conditions

and the pre-conditioned bi-conjugate gradient method is used to obtain the approximate
solution.

For the model problem, numerical results have been obtained for various choices of param-
eter �, numerical scheme parameter � and imposed boundary conditions, this for various
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Table I. Parameters of numerical results for test problem.

� b.c. � Points in stencil

0 Dirichlet 0 19
0 Dirichlet=Neumann 0 19
10 Dirichlet 0 19
0 Dirichlet −2=3 21
0 Dirichlet +2=3 15
0 Dirichlet 0 19

Table II. Summary of results of test problem.

b.c. � � h Max. error L2 norm Iter

Dirichlet 0 0 1=10 4:81351× 10−3 6:28649× 10−5 15
Dirichlet 0 0 1=20 3:10890× 10−4 1:10908× 10−6 26
Dirichlet 0 0 1=30 6:00456× 10−5 1:11789× 10−7 34
Dirichlet 0 0 1=40 1:91310× 10−5 2:22963× 10−8 38
Dirichlet=Neumann 0 0 1=10 7:03758× 10−3 8:83731× 10−5 6
Dirichlet=Neumann 0 0 1=20 3:25727× 10−4 1:36645× 10−6 11
Dirichlet=Neumann 0 0 1=30 5:99446× 10−5 1:37586× 10−7 17
Dirichlet=Neumann 0 0 1=40 1:88639× 10−5 2:75621× 10−8 24
Dirichlet 10 0 1=10 4:37620× 10−3 5:74069× 10−5 14
Dirichlet 10 0 1=20 2:84521× 10−4 1:02030× 10−6 25
Dirichlet 10 0 1=30 5:50169× 10−5 1:02951× 10−7 32
Dirichlet 10 0 1=40 1:75359× 10−5 2:05409× 10−8 37
Dirichlet 0 −2=3 1=10 8:09828× 10−4 1:08460× 10−5 14
Dirichlet 0 −2=3 1=20 3:39588× 10−5 1:22886× 10−7 26
Dirichlet 0 −2=3 1=30 5:93874× 10−6 1:11038× 10−8 45
Dirichlet 0 −2=3 1=40 1:82233× 10−6 2:12921× 10−9 59
Dirichlet 0 +2=3 1=10 8:78799× 10−3 1:14734× 10−4 15
Dirichlet 0 +2=3 1=20 5:87690× 10−4 2:09498× 10−6 29
Dirichlet 0 +2=3 1=30 1:14148× 10−4 2:12467× 10−7 40
Dirichlet 0 +2=3 1=40 3:64398× 10−5 4:24628× 10−8 45

choices of mesh width h. Table I presents the parameters for the various numerical results
that are shown in Table II. Table II shows the maximum deviation from the exact solution,
the L2 norm of the error and the number of iterations required for convergence of the pre-
conditioned (bi)-conjugate gradient solver to a tolerance of 10−12. Results are shown for 4
mesh sizes: h=1=10, 1=20, 1=30 and 1=40. In Table II, three di�erent discretization stencils
are considered: involving 19 grid points (�=0), 21 grid points (�=− 2=3) and 15 grid points
(�=2=3) within the 27-point stencil of Figure 1. For the 19-point stencil, the e�ect of im-
posed boundary conditions can be analysed by comparing the respective results in Table II.
The Neumann boundary conditions can be seen to result in a slightly larger numerical error for
the coarser meshes. For the �nest meshes, the e�ect is negligible. Also for the 19-point stencil
(�=0), the dependence of the numerical error on parameter � can be studied by comparing

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:227–244



FOURTH-ORDER ACCURATE COMPACT-DIFFERENCE DISCRETIZATION 237

h

er
ro

r

0.02 0.04 0.06 0.08 0.1
10-6

10-5

10-4

10-3

10-2
λ = 0; β = 0
λ = 10; β = 0
λ = 0; β = -2/3
λ = 0; β = 2/3

Dirichlet boundary conditions

Figure 2. Maximum error versus h, Dirichlet boundary conditions.

results for �=0 and 10 in Table II, both for Dirichlet boundary conditions. An increasing
� can be seen to slightly enhance the convergence rate of the iterative solution method, as
a result of the more favourable condition number of the discretization matrix. Furthermore,
the numerical error is reduced for an increased �. From Table II it can be seen that the
magnitude of the maximum deviation from the exact solution is larger for the 15-point sten-
cil (�=2=3) than that for the 19-point stencil (�=0) and the 21-point stencil (�=− 2=3).
The convergence behaviour of the pre-conditioned conjugate gradient method is in general
most favorable for the 19-point stencil (�=0). For Dirichlet boundary conditions the numer-
ical results are compiled in Figure 2, including results for intermediate values of mesh width
h. For the 4 di�erent cases, a linear dependence in a double logarithmic axis system can be
seen for smaller values of h. The slope of the almost straight lines indicates that the maximum
deviation from the exact solution behaves asymptotically as h4 (the slopes vary from 3.963
to 4.074 for di�erent choices of the parameters � and �). A similar comparison is shown in
Figure 3 for Neumann=Dirichlet boundary conditions. Qualitatively, the results are similar to
those for Dirichlet boundary conditions imposed on all 6 faces of the computational domain,
i.e. also fourth-order accuracy is achieved. The e�ect of � on the numerical error is shown in
detail in Figure 4 for Dirichlet boundary conditions for values of � within the range [−1; 1].
The error as function of � reveals a cusp-like behaviour around �=− 3=4. Around this value
of �, the maximum error is signi�cantly lower than for other choices of �. This behaviour
is thought to occur as a result of cancellation of parts of the leading term of the truncation
error as a result of the particular form of the exact solution, i.e. the trigonometric functions
in the three co-ordinate directions. A detailed study of the dependence of the error on � for
the model problem with an exponential spatial dependence shows a weaker dependence on �,
without any cusp-like behaviour.
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6. APPLICATION TO INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

The discretization method for the Helmholtz equations of fourth-order accuracy is used as
the basis of a discretization method for the three-dimensional Navier–Stokes equations for an
incompressible �ow of a Newtonian �uid with constant viscosity in Cartesian co-ordinates,
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given by

@u
@t
+ u · ∇u=−1

�
∇p+ ��u (14)

∇ · u=0 (15)

where u denotes the velocity vector and p is the pressure, � the (constant) density and � the
(constant) kinematic viscosity of the medium. Equation (15) is the divergence-free constraint
on the velocity �eld, as a result of the incompressibility of the �ow. The Navier–Stokes equa-
tions are integrated in time using the fractional time-stepping method of Kim and Moin [1].
This method is second-order accurate in time and involves three steps to advance a solution
of the Navier–Stokes equations from time level n to n+1. In the �rst step, the second-order
explicit Adams–Bashfort method is applied to the non-linear convection terms and the second-
order implicit Crank–Nicholson scheme to the viscous terms. Omitting the pressure term from
the momentum equations, for co-ordinate direction i=1; 2; 3, an intermediate velocity �eld
with components vi can be obtained from the Helmholtz equations:(

1− ��t
2
�

)
vi=− �t

(
3
2
Hin − 1

2
Hin−1

)
+

(
1 +

��t
2
�

)
uni (16)

where �t is the time-step and Hn
i the non-linear convection terms at time-level n.

In a three-dimensional �ow situation, Equation (16) corresponds to a system of three in-
dependent Helmholtz equations. Since the pressure term was omitted from the momentum
equations, the intermediate velocity �eld with components vi will not be divergence-free.
The next step in the temporal integration is the computation of a pressure-like variable from
the intermediate velocity �eld vi. Quantity �, de�ned as p=�+ (��t=2)�� (here, p is the
pressure divided by the constant density), can be computed from the Poisson equation

��=
1
�t
@vi
@xi

(17)

where the divergence of the intermediate velocity �eld forms the forcing term. From the
computed pressure-like variable �, a solenoidal velocity �eld at the new time-level n+ 1 is
computed as

uin+1 = vi − �t @�@xi (18)

The present method for the incompressible Navier–Stokes equations employs a collocated mesh
formulation. The spatial discretization method uses the sixth-order accurate compact �nite-
di�erences presented by Lele [10] for the �rst and second derivatives in Equations (16)–(18).
The discretization of the non-linear convection terms Hi uses the skew-symmetric form to
reduce the aliasing errors, see Reference [11], and conserve kinetic energy. The discretization
method developed in this article for the Helmholtz equation is used to discretize Equations
(16) and (17). A tenth-order accurate low-pass �lter, based on the expression given by Lele
[10], is used to suppress the growth of under-resolved modes. This approach forms a suitable
alternative for ‘arti�cial viscosity’ terms typically used in Navier–Stokes methods based on
lower-order discretization methods.
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The Navier–Stokes simulation method is implemented using the C programming language.
The Helmholtz and Poisson equations are solved using routines from the Helmholtz solver
tested in Section 5. The implementation is reported in Reference [12]. Similarly, the implemen-
tation of Dirichlet as well as Neumann boundary conditions is identical to the implementation
in the Helmholtz solver used in Section 5. For practical simulations of three-dimensional
�ows, a parallel implementation of the Navier–Stokes method is needed. The parallelization
of the Navier–Stokes solver is based on domain decomposition and explicit message-passing
between the processes, allowing parallel simulations to be performed on distributed-memory
as well as shared-memory computers. The MPI library is used for the required communication
and synchronization in simulations on multiple processors. The parallelization is described in
more detail in Reference [5].

7. RESULTS FOR INSTABILITY IN VORTEX PAIR

The simulation method for the incompressible Navier–Stokes equations, based on the fourth-
order accurate spatial discretization techniques discussed in Section 2, is now applied to
the well-studied time-dependent �ow of a counter-rotating vortex pair developing a long-
wavelength three-dimensional sinusoidal instability.

7.1. Crow instability test case

Crow [6] presented a linear stability analysis of small perturbations on a pair of trailing vortex
�laments with a relatively small core (core radius rc less than 10% of the spacing of the
vortices) using long-wavelength assumptions. This analysis showed a sinusoidal instability
with a typical wavelength of approximately 8 times the initial spacing b0 of the vortex.
The linear perturbations occur in planes that are inclined at approximately 45◦ with respect
to the horizontal plane. The driving mechanism of the evolution of the three-dimensional
instability is the mutual velocity induction of the vortices. The analysis showed an exponential
growth of the linear perturbation with a growth rate directly proportional to the straining �eld
induced by mutual velocity induction, i.e. �=2�b20, with � the circulation of the vortices. Using
this fact, we introduce a non-dimensional time T = t=tref , with tref = 2�b20=�. Characteristic time
scale tref is the time in which the unperturbed vortex pair would move one vortex spacing
downward as a result of the mutual velocity induction.
In the temporal evolution of the Crow instability, two stages can be discerned:

• The linear stage with an exponential growth at the growth rate predicted by linear
stability analysis. This growth rate is maintained up to amplitudes for which the as-
sumption of linearity becomes invalid. At the same time, the planes in which the in-
stability occurs, rotate from the initial inclination angle of 45 to 60◦ or more. These
e�ects have been observed by various researchers, see e.g. References [13–16]. Figure 5
shows the vortex pair in the computational domain at T =0:637 for a Reynolds number
based on circulation Re� =�=�=6:7× 105. Shown are iso-surfaces of pressure. At this
stage of the evolution of the Crow instability, the perturbation still has a
sinusoidal shape.

• The non-linear stage characterized by the reconnection of the vortices and the subsequent
formation of vortex ring-like structures. Using a further development of the Navier–
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Figure 5. Linear stage of Crow instability: T =0:637, Re� =6:7× 105, rc=b=0:2, 813 mesh.

T = 3.310

T = 3.692
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Figure 6. Vortex reconnection in Crow instability evolution: Re� =1:67× 104, rc=b=0:2, 1283 mesh.

Stokes method described here, this stage is shown is Figure 6. The �gure shows iso-
surfaces of the magnitude of vorticity. Results have been obtained on a 1283 mesh for
a Reynolds number based on circulation Re� =1:67× 104.
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For the purpose of the present article, we use the linear stage of the Crow instability as a
validation test case for the numerical method, since it allows a comparison with the growth
rate predicted by linear stability theory. The vortices have a Lamb–Oseen azimuthal velocity
pro�le, which in a cylindrical co-ordinate system is given as:

u	(r)=
�
2�
[1− exp(−
r2=r2c )]

r
(19)

where rc represents the vortex core radius and r is the radial distance from the vortex axis.
The constant 
 in the exponential function is chosen to position the maximum of the azimuthal
velocity at rc (this leads to the constraint (2
+ 1)e−
=1→ 
∼=1:256). Here, the spacing b0
between the vortices in the unperturbed situation is chosen to be 5 times the vortex core
radius, i.e. rc=b0 = 0:2. For this choice of rc=b0, linear stability theory predicts a wavelength
of maximum ampli�cation � of 8 b0. A cubic computational domain is used with uniform
mesh. The dimensions of the domain are set at 8 b0, i.e. the wavelength of the perturbation
in the axial direction of the vortex pair. To account for the downward motion of the vortex
pair, a constant vertical velocity, which is equal to the descent velocity, is superposed on the
velocity �eld. This has an e�ect similar to using a frame of reference that moves at constant
speed.

7.2. Numerical results for Crow instability

For the Crow instability test case, simulations have been performed for di�erent meshes and
Reynolds numbers. The following boundary conditions are imposed on the computational
domain:

• Dirichlet boundary conditions at in�nity, i.e. at the 4 domain boundaries in the y and
z co-ordinate directions shown in Figure 5, for the Helmholtz equations for the velocity
updates as well as the pressure Poisson equation.

• Neumann boundary conditions in the periodic axial direction, i.e. at x=0 and Lx, for the
Helmholtz equations for the updates of the velocity in the y and z co-ordinate directions
and for the pressure Poisson equation.

• Dirichlet boundary condition for the velocity component in the x co-ordinate direction.
At x=0 and Lx, velocity component in the axial direction is set to 0.

The parameters of the di�erent simulations are shown in Table III. The mesh size shown in
Table III is the mesh size of the unpartitioned mesh. All simulations have been performed
on 4 processors of an SGI/Origin 2000 (with R10K processors). For this purpose, 4 partially-
overlapping sub-domains have been used. The sixth column in Table III gives the total number
of grid points. The total amount of internal memory required for each simulation is shown
in the last column of Table III. Figure 7 shows the normalized amplitude of the sinusoidal
perturbation (normalization with the amplitude of the initial amplitude used in the simulation)
versus non-dimensional time T . The amplitude of the perturbation in the Navier–Stokes simu-
lations is determined from the variation in axial direction of the lateral location of the centres
of the vortex �lament. The computed growth is compared with the exponential growth rate
predicted by the inviscid asymptotic theory of Widnall et al. [17]. At later times, i.e. T¿2,
the growth rate of the instability mode in the Navier–Stokes simulations is reduced. This
can be attributed to the e�ect of viscosity, which reduces the circulation of the vortices and
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Table III. Parameters for Crow instability test case.

Re� �(m2=s) �(m2=s) Mesh # blocks # grid points Memory (MB)

6:7× 103 10:0 1:5× 10−3 813 4 6:04× 105 148
6:7× 105 10:0 1:5× 10−5 813 4 6:04× 105 148
6:7× 105 10:0 1:5× 10−5 1213 4 1:93× 106 384
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Figure 7. Growth of Crow instability mode: e�ect of mesh resolution.

increases the radius of the vortex cores. At later stages shown in Figure 7, the amplitude of the
perturbation is such that predictions of linear stability theory are no longer valid. Comparing
the results for the 813 and 1213 meshes, it can be seen that for both meshes the computed
growth curves are nearly identical and show a very good agreement with the result from linear
stability theory. Therefore in the period of the time considered, the discretization method for
the Navier–Stokes equations leads to a su�cient resolution of the evolving �ow �eld for
Reynolds numbers as high as 6:7× 105. The mesh requirements found here are consistent
with those reported for the high-order accurate Navier–Stokes method of Reference [14].

8. CONCLUDING REMARKS

Presented are a fourth-order discretization method for Helmholtz equations and the application
of this discretization method in a numerical method for time-accurate simulations of the
three-dimensional incompressible Navier–Stokes equations. The fourth-order accuracy of the
Helmholtz solver is demonstrated in a mesh-re�nement study for a simple model problem with
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an exact solution. Furthermore, the dependence of the magnitude of the numerical error and
the convergence behaviour of the iterative solution method on the numerical scheme parameter
� is studied. The resolving properties of the Navier–Stokes solver are shown in a numerical
study of a time-dependent three-dimensional �ow, i.e. the evolution of a three-dimensional
instability in a counter-rotating vortex pair. The growth rate of the instability obtained from
the numerical simulations shows a good agreement with available analytical predictions from
linear stability theory.
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